Example: NN layer with OJAX

Example: NN layer with OJAX#

Here is a self-contained example showing how OJAX can be used to define a fully connected layer for deep learning. The highlighted regions below showcase two important characteristics of OJAX:

  • OJAX has seamless JAX integration: use JAX transforms and functions anywhere. And they work as intended.

  • OJAX is “pure like JAX”: no in-place update. New instances with updated states are always returned instead.

from dataclasses import field
import jax
import jax.numpy as jnp
from jax.random import PRNGKey, split as jrsplit, normal as jrnormal
from ojax import aux, child, OTree, fields


# defines a fully connected layer for neural networks
class Dense(OTree):
    input_features: int  # inferred to be auxiliary data
    output_features: int = aux()  # or explicit declaration
    weight: jnp.ndarray = field(default=..., init=False)  # inferred as child
    bias: jnp.ndarray = child(default=..., init=False)  # explicit declaration

    # use .assign_ only in __init__ function
    def __init__(self, input_features: int, output_features: int):
        self.assign_(
            input_features=input_features, output_features=output_features
        )

    # forward pass
    def forward(self, input_array):
        return jnp.inner(input_array, self.weight) + self.bias

    # set new parameters, notice it returns an updated version of itself
    def update_parameters(self, weight, bias):
        assert weight.shape == (self.output_features, self.input_features)
        assert bias.shape == (self.output_features,)
        return self.update(weight=weight, bias=bias)


# example usage
if __name__ == "__main__":
    # define data
    data_count, data_features, output_features = 4, 3, 2
    key = PRNGKey(0)
    key, key_data, key_weight, key_bias = jrsplit(key, 4)
    input_data = jrnormal(key_data, shape=(data_count, data_features))
    # define layer
    init_weight = jrnormal(key_weight, shape=(output_features, data_features))
    init_bias = jrnormal(key_bias, shape=(output_features,))
    layer = Dense(data_features, output_features)
    # No inplace update, need to get the returned updated layer instance!
    layer = layer.update_parameters(weight=init_weight, bias=init_bias)
    for f in fields(layer):
        print(f.name, type(f), OTree.__infer_otree_field_type__(f))
        # input_features <class 'dataclasses.Field'> <class 'ojax.otree.Aux'>
        # output_features <class 'ojax.otree.Aux'> <class 'ojax.otree.Aux'>
        # weight <class 'dataclasses.Field'> <class 'ojax.otree.Child'>
        # bias <class 'ojax.otree.Child'> <class 'ojax.otree.Child'>
    # use layer as a pytree
    layer_w, layer_b = jax.tree.flatten(layer)[0]
    assert (layer_w == init_weight).all() and (layer_b == init_bias).all()
    # flatten and unflatten recovers the layer
    layer = jax.tree.unflatten(*jax.tree.flatten(layer)[::-1])
    # compute output, notice that jax.jit / jax.vmap works out of the box
    output = jax.jit(jax.vmap(layer.forward))(input_data)
    print(output)
    # [[-2.666112   -1.0220472 ]
    #  [-3.701102   -0.8207982 ]
    #  [-4.4596996   0.6687442 ]
    #  [ 0.92416656 -3.302886  ]]

For a full-fledged NN library with module system, optimizers, interface with impure codebase (e.g., dataloader and log), and fully jit-able and parallelizable high-level functions for NN training, stay tuned for OJAX-NN.